
DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE

FINAL DRAFT - UNDER REVIEW

CHRISTOPH JENTZSCH
FOUNDER & CTO, SLOCK.IT

CHRISTOPH.JENTZSCH@SLOCK.IT

Abstract. This paper describes the first implementation of Decentralized Autonomous Organization (DAO) code to
automate organizational governance and decision-making. The code can be used by individuals working together
collaboratively outside of a traditional corporate form. It can also be used by a registered corporate entity to automate
formal governance rules contained in corporate bylaws or imposed by law. First the DAO concept is described, then
minority rights is discussed, and a solution to a “robbing the minority” attack vector is proposed. Finally, a practical
implementation of a first generation DAO entity is provided using smart contracts written in Solidity on the Ethereum
blockchain.

1. Introduction

Corporate entities of all kinds are governed by rules
that describe permitted and proscribed conduct. These
rules may exist as private contracts (like bylaws or share-
holder agreements) between corporate owners. They may
also be imposed by law in addition to or in the absence of
a written agreement between participants.

Historically, corporations have only been able to act
through people (or through corporate entities that were
themselves ultimately controlled by people). This presents
two simple and fundamental problems. Whatever a pri-
vate contract or public law require: (1) people do not
always follow the rules and (2) people do not always agree
what the rules actually require. Collaboration without a
corporate form does not solve these problems, necessarily,
and it may introduce others. In the absence of a corporate
form, an explicit written agreement is substituted for un-
clear informal “understandings” and the legal protections
provided by a corporate form will not be available.

Rule-breaking within an organization not always ob-
vious, and motives may not matter to stakeholders once
their money has been lost. While bad behavior may make
a corporation or its management civilly or criminally li-
able, punishment can come as little comfort to an investor
who has already lost their money.

Crowdfunding (Massolution [2015]) amplifies the prob-
lem. On the one hand, it has made it easier for small con-
tributors to invest in large projects, and it has also made it
possible for entrepreneurs to receive financial support that
might not have been easily available in the past. On the
other hand, small investors remain vulnerable to financial
mismanagement or outright fraud, and because they have
a small stake in a venture, they may lack power to identify
problems, participate in governance decisions, or to eas-
ily recover their investment (Knibbs [2015], Biggs [2015]).
At the same time, corporate leadership and management
may be accused of malfeasance or mismanagement when
they believe that they have acted in good faith, based on
their understanding of their obligations and interpretation
of applicable rules.

This paper presents a potential solution using
Ethereum, (Buterin [2013], Wood [2014]) a blockchain

technology which integrates a Turing complete program-
ming language with smart contract processing function-
ality. This paper illustrates a method that for the first
time allows the creation of organizations in which (1) par-
ticipants maintain direct real-time control of contributed
funds and (2) governance rules are formalized, automated
and enforced using software. Specifically, standard smart
contract code (Szabo [1997], Miller [1997]) has been writ-
ten that can be used to form a Decentralized Autonomous
Organization (DAO) on the Ethereum blockchain. This
paper explains how a DAO’s code works, focusing on some
basic formation and governance features, including struc-
ture, creation and voting rights.

First a DAO’s Creation Phase and basic functionality
are described. Then minority owner rights are discussed
and a solution to the “Majority Robbing the Minority At-
tack” problem is proposed: the “DAO split.” The smart
contract code is then explored in detail, and conclude with
an explanation and detailed specification of the “DAO
split.”

The code for the smart contracts is located at: https:

//github.com/slockit/DAO/

A word of caution, at the outset: the legal status of
DAOs remains the subject of active and vigorous debate
and discussion. Not everyone shares the same definition.
Some have said that they are autonomous code and can
operate independently of legal systems; others have said
that they must be owned or operate by humans or hu-
man created entities. There will be many uses cases, and
the DAO code will develop over time. Ultimately, how a
DAO functions and its legal status will depend on many
factors, including how DAO code is used, where it is used,
and who uses it. This paper does not speculate about
the legal status of DAOs worldwide. This paper is not
intended to offer legal advice or conclusions. Anyone who
uses DAO code will do so at their own risk.

2. Dao Concept

DAO code is written in the “Solidity” programming
language. A DAO is activated by deployment on the
Ethereum blockchain.

Once deployed, a DAO’s code requires “ether” to en-
gage in transactions on Ethereum. Ether is the digital

1

https://github.com/slockit/DAO/
https://github.com/slockit/DAO/

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 2

fuel that powers the Ethereum network. Without ether, a
DAO can not do anything so a DAO’s first order of busi-
ness is to receive ether. After a DAO’s code is deployed,
ether may be sent to the DAO’s smart contract address
during an initial Creation Phase which is defined in the
DAO’s code.

In exchange for ether, a DAO’s code creates tokens
that are assigned to the account of the person who sent
the ether. The token grants its holder voting and owner-
ship rights. The number of tokens created is proportional
to the amount of ether transferred. Token price varies
over time (see section 5). Token ownership is freely trans-
ferable on the Ethereum blockchain, when the Creation
Phase has ended.

A minimum DAO Creation goal and Creation Phase
time-period are set as parameters in a DAO’s code at the
time of deployment. If the minimum DAO Creation goal
is not reached at the close of the Creation Phase, all ether
is returned. After the Creation Phase has ended, the total
ether raised is denoted by Ξraised and the total amount of
tokens created is denoted by Ttotal.

A DAO stores ether and other Ethereum based tokens
and transmits them based on the DAO’s code. It does not
do much else. It cannot build a product, write code or
develop hardware. It requires a “Contractor” to accom-
plish these and other goals. A DAO selects a Contractor
by accepting a Contractor’s proposal.

Any DAO Token Holder may become a Contractor
by submitting proposals to use a DAO’s ether, denoted
by Ξtransfer. If a proposal is approved, the DAO trans-
mits ether to a smart contract representing the proposed
project. Such smart contracts can be parameterized and
enable a DAO to interact with and influence the project
it chose to support. An example of such an agreement
between a DAO and a project to be funded can be found
in the appendix (A.4).

Members of a DAO cast votes weighted by the amount
of tokens they control. Tokens are divisible, indistin-
guishable and can easily be transferred between accounts.
Within the contracts, the individual actions of members,
cannot be directly determined. There is a set time frame
tp to debate and vote on any given proposal. In our exam-
ple, this time frame is set by the creator of the proposal,
and is required to be at least two weeks for a regular pro-
posal.

After tp has passed, any token holder can call a func-
tion in the DAO contract that will verify that the major-
ity voted in favor of the proposal and that quorum was
reached; the function will execute the proposal if this is
the case. If this is not the case, the proposal will be closed.

The minimum quorum represents the minimum num-
ber of tokens required for a vote to be valid, is denoted by
qmin, and calculated as follows:

(1) qmin =
Ttotal

d
+

Ξtransfer · Ttotal

3 · (ΞDAO + RDAO)

Where d is the minQuorumDivisor. This parameter’s de-
fault value is 5, but it will double in the case the quorum
has not been met for over a year. ΞDAO is the amount
of ether owned by a DAO and RDAO is the amount of re-
ward tokens owned by this DAO, as explained in section 7
(also see rewardToken in A.3). The sum ΞDAO +RDAO is
equal to the amount of ether used to Create DAO tokens

plus the rewards received or said another way, the total
amount of ether a DAO has ever received.

This means, initially, a quorum of 20% of all tokens is
required for any proposal to pass. In the event Ξtransfer

equals the amount of ether a DAO has ever received, then
a quorum of 53.33% is required.

In order to prevent “proposal spam,” a minimal de-
posit can be required to be paid when creating a proposal,
which gets refunded if quorum is achieved. If quorum is
not achieved, the DAO keeps the proposal deposit. The
value of the proposal deposit can be changed from the
default value by the DAO through another proposal.

3. Notation

Throughout this paper, Ξ always represents an amount
of ether in its base unit wei. This is defined as 1 Wei =
10−18 Ether (Wood [2014]). Similarly, DAO tokens are
denoted with T and always represent the amount of DAO
tokens in its base unit, defined as 10−16 DAO token.

4. Majority robs minority attack

Minority owner rights can be a problem in any corpo-
rate form. Minority rights may be protected or addressed
by provisions in corporate governance documents or by
statute or judge-made law. But many of these solutions
fail because minority owners may lack voting rights or the
ability to “vote with their feet” and easily retrieve their
capital. This paper presents a solution to this problem in
the DAO’s code.

A problem every DAO has to mitigate is the ability for
the majority to rob the minority by changing governance
and ownership rules after DAO formation. For example,
an attacker with 51% of the tokens, acquired either dur-
ing the fueling period or created afterwards, could make
a proposal to send all the funds to themselves. Since they
would hold the majority of the tokens, they would always
be able to pass their proposals.

To prevent this, the minority must always have the
ability to retrieve their portion of the funds. Our solution
is to allow a DAO to split into two. If an individual, or a
group of token holders, disagree with a proposal and want
to retrieve their portion of the ether before the proposal
gets executed, they can submit and approve a special type
of proposal to form a new DAO. The token holders that
voted for this proposal can then split the DAO moving
their portion of the ether to this new DAO, leaving the
rest alone only able to spend their own ether.

This idea originates from a blog post by Vitalik Buterin
(Buterin [2015]).

A problem this simple fix doesn’t address is voter apa-
thy: some token holders might not be actively involved in
their DAO and might not follow proposals closely. An at-
tacker could use this to their advantage. Even though the
minority has the chance to retrieve their funds and split
the DAO, some could be unaware of the situation and fail
to act. For a DAO to be considered safe, it is required
that inactive token holders must also be protected from
losing their ether. Our proposed solution is implemented
by limiting each individual DAO to a single Curator. This
Curator controls the list of addresses that can receive ether
from the DAO, across all proposals. This gives the Cura-
tor of a DAO considerable power. To prevent the abuse of

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 3

this power, it is possible for a DAO to vote for a new Cu-
rator, which may result in a split of the DAO as described
above.

Any token holder can make a proposal to vote for a
new Curator. In effect, even a single token holder is able
to both retrieve their remaining portion of ether and main-
tain their right to any future rewards associated to their
previous contribution, as these will be sent to the new
DAO automatically. Rewards are defined as any ether
received by a DAO generated from products the DAO
funded so far and are explained in further detail in section
7.

The process of choosing a new Curator is as follows:
Any token holder can submit a proposal for a new Cu-
rator. In this case, no proposal deposit is required, be-
cause an attacker could vote for an extremely high de-
posit, preventing any splits. The debating period for this
proposal is 7 days. This is 7 days less than the minimum
required for regular proposals, allowing anyone to retrieve
their funds before a potentially malicious proposal goes
through. There is no quorum requirement, so that every
token holder has the ability to split into their own DAO.
The debating period is used to discuss (on or off-chain) the
new Curator and conduct a first vote that’s non-binding.
After this first vote, token holders can confirm its results
or not. In the case a majority opts to keep the original
Curator, the minority can either keep the original Cura-
tor in order to avoid a split, or inversely they can confirm
their vote for a new Curator and move their portion of the
ether to a new DAO.

5. Token Price

DAO Token Creation rate decreases over time. This re-
flects an assumption that early acts of DAO Creation have
greater risk, as they may have less information about the
potential success of the DAO and do not know whether
what contribution will lead to full fueling of the DAO. The
DAO described in this paper has the following Creation
schedule:
(2)

P (t) =

1 if t < tc − 2 · w

1 + 0.05 ·m(t) if tc − 2 · w 6 t < tc − 4 · d

1.5 otherwise

with the multiplier m defined as:

(3) m(t) = (t− (tc − 2 · w))/d

Here t is the unix time in seconds, tc is the closing time
of the fueling period (see A.2 closingTime), w is a week
in seconds and d a day in seconds. Hence the number of
tokens (in its base unit) each person Creates is calculated
as: P (t) ·Ξc. Here Ξc stands for the amount of ether sent
to fuel a DAO, denoted in wei. This results in a constant
Creation rate in the beginning, until 2 weeks before the
end of the DAO Creation Phase. At this time the amount
of ether required to Create DAO tokens increases daily by
0.05 Ξc per base unit of DAO token. Until 4 days before
the closing time when there will be a constant Creation
rate of 1.5 Ξc per base unit of DAO token.

Creation rate decreases during the Creation Phase
could lead to a situation where a single contributor, hav-
ing Created DAO tokens at the initial Creation rate, could
split the DAO immediately after the Creation Phase ends,
thereby receiving more ether than they put in due to other
contributors having fueled a DAO at a higher Creation
rate (Green [2016]). In order to avoid that possibility, all
ether that is used to fuel a DAO above the initial Cre-
ation rate, will be sent to an extra account. Denoted as
extraBalance in A.2. This ether can be sent back to the
DAO through a proposal after the DAO has spent at least
this amount of ether. This rule is implemented in the
internal function isRecipientAllowed in section 6.3.

6. Contracts

This section will detail the smart contracts implement-
ing the aforementioned concept. The contracts are writ-
ten in the programming language Solidity (Reitwiessner
and Wood [2015]). Each contract has member variables
and functions which can be externally called by sending a
transaction to the Ethereum network with the DAO con-
tract address as the recipient and the method ID (optional
with parameters) as data. This section will discuss the
meaning of the variables and the functions in detail.

The main contract is called ’DAO’. It defines the inner
workings of the DAO and it derives the member variables
and functions from ’Token’ and ’TokenCreation’. Token
defines the inner workings of the DAO Token and Token-
Creation defines how the DAO token is created by fueling
the DAO with ether. In addition to these three contracts,
there is the ’ManagedAccount’ contract, which acts as a
helper contract to store the rewards which are to be dis-
tributed to the token holders and the extraBalance (see
section 5). The contract ’SampleOffer’ (A.4) is an exam-
ple of what a proposal from a contractor to the DAO could
look like.

6.1. Token.

contract TokenInterface {

mapping (address => uint256) balances;

mapping (address => mapping (address => uint256)) allowed;

uint256 public totalSupply;

function balanceOf(address _owner) constant returns (uint256 balance);

function transfer(address _to, uint256 _amount) returns (bool success);

function transferFrom(address _from, address _to, uint256 _amount) returns (bool success);

function approve(address _spender, uint256 _amount) returns (bool success);

function allowance(address _owner, address _spender) constant returns (uint256 remaining);

event Transfer(address indexed _from, address indexed _to, uint256 _amount);

event Approval(address indexed _owner, address indexed _spender, uint256 _amount);

}

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 4

Above is the interface of the Token contract. The
interfaces of these contracts are used in the text of
this document to give a simple overview of the func-
tions and variables used in the contract, the full im-
plementation can be found in the appendix (A.1).
This contract represents the standard token as de-
scribed here: https://github.com/ethereum/wiki/

wiki/Standardized_Contract_APIs, and the contract
https://github.com/ConsenSys/Tokens/blob/master/

Token_Contracts/contracts/Standard_Token.sol was
used as a starting point for the contracts creation.

The map balances stores the number of DAO tokens
which are controlled by an address. All contracts which
derive from TokenInterface can directly modify this map,
but only 4 functions do so: createTokenProxy, transfer
, transferFrom and splitDAO.

The map allowed is used to track the previously speci-
fied addresses that are allowed to send tokens on someone
else’s behalf.

The integer totalSupply is the total number of DAO
tokens in existence. The public keyword creates a func-
tion with the same name as the variable which returns its
value so that it is publically available.

The function balanceOf returns the balance of the
specified address.

The function transfer is used to send token from the
sender of the message to another address.

The function transferFrom is used to transfer tokens
on behalf of someone else who has approved the transfer
in advance using the approve function.

The function approve can be used by the DAO token
owner to specify a certain spender to transfer a spec-
ified value from their account using the transferFrom

function. To check whether a certain address is allowed
to spend DAO tokens on behalf of someone else, the
allowance function can be used, which returns the num-
ber of tokens which can be spent by the spender. This is
similar to writing a check.

The event Transfer is used to inform lightweight
clients about changes in balances.

The event Approval is used to inform lightweight
clients about changes in allowed.

6.2. TokenCreation.

contract TokenCreationInterface {

uint public closingTime;

uint public minTokensToCreate;

bool public isFueled;

address public privateCreation;

ManagedAccount extraBalance;

mapping (address => uint256) weiGiven;

function TokenCreation(uint _minTokensToCreate, uint _closingTime);

function createTokenProxy(address _tokenHolder) returns (bool success);

function refund();

function divisor() returns (uint divisor);

event FuelingToDate(uint value);

event CreatedToken(address indexed to, uint amount);

event Refund(address indexed to, uint value);

}

Above is the interface of the TokenCreation contract
(A.2).

The integer closingTime is the (unix) time at which
the Creation Phase ends.

The integer minTokensToCreate is the number of wei-
equivalent tokens which are needed to be created by the
DAO in order to be considered fueled.

The boolean isFueled is true if DAO has reached its
minimum fueling goal, false otherwise.

The address privateCreation is used for DAO splits
- if it is set to 0, then it is a public Creation, otherwise,
only the address stored in privateCreation is allowed to
create tokens.

The managed account (A.5) extraBalance is used to
hold the excess ether which is received after the Creation
rate is decreased during the Creation Phase. Anything
that has been paid above the initial price goes to this ac-
count.

The map weiGiven stores the amount of wei given by
each contributor during the Creation Phase and is only

used to refund the contributors if the Creation Phase does
not reach its fueling goal.

The constructor TokenCreation initiates the Cre-
ation Phase with the arguments minTokensToCreate,
closingtime and privateCreation, which will be set in
the constructor of the DAO contract (A.3) which is only
executed once, when the DAO is deployed. In order to
interact with the contract the following functions can be
used:

createTokenProxy. This function creates one unit of the
DAO tokens minimum denomination for every wei sent.
The price is calculated as

Ξc · 20/divisor

Here Ξc is the amount of wei given in order to cre-
ate tokens, and divisor is calculated depending on the
time: 20/P (t) , as described in section 5. The parame-
ter tokenHolder defines the receiver of the newly minted
tokens.

https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://github.com/ConsenSys/Tokens/blob/master/Token_Contracts/contracts/Standard_Token.sol
https://github.com/ConsenSys/Tokens/blob/master/Token_Contracts/contracts/Standard_Token.sol

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 5

refund. This function can be called by any contributor to
receive their wei back if the Creation Phase failed to meet
its fueling goal.

divisor. This function is used to calculate the price of
the token during the Creation Phase in the function
createTokenProxy.

The events FuelingToDate, CreatedToken and Refund

are used to inform lightweight clients of the status of the
Creation Phase.

6.3. DAO.

contract DAOInterface {

Proposal[] public proposals;

uint minQuorumDivisor;

uint lastTimeMinQuorumMet;

address public curator;

address[] public allowedRecipients;

mapping (address => uint) public rewardToken;

uint public totalRewardToken;

ManagedAccount public rewardAccount;

ManagedAccount public DAOrewardAccount;

mapping (address => uint) public paidOut;

mapping (address => uint) public DAOpaidOut;

mapping (address => uint) public blocked;

uint public proposalDeposit;

uint sumOfProposalDeposits;

DAO_Creator public daoCreator;

struct Proposal {

address recipient;

uint amount;

string description;

uint votingDeadline;

bool open;

bool proposalPassed;

bytes32 proposalHash;

uint proposalDeposit;

bool newCurator;

SplitData[] splitData;

uint yea;

uint nay;

mapping (address => bool) votedYes;

mapping (address => bool) votedNo;

address creator;

}

struct SplitData {

uint splitBalance;

uint totalSupply;

uint rewardToken;

DAO newDAO;

}

modifier onlyTokenholders {}

function DAO(

address _curator,

DAO_Creator _daoCreator,

uint _proposalDeposit,

uint _minTokensToCreate,

uint _closingTime,

address _privateCreation

)

function () returns (bool success);

function receiveEther() returns(bool);

function newProposal(

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 6

address _recipient,

uint _amount,

string _description,

bytes _transactionData,

uint _debatingPeriod,

bool __newCurator

) onlyTokenholders returns (uint _proposalID);

function checkProposalCode(

uint _proposalID,

address _recipient,

uint _amount,

bytes _transactionData

) constant returns (bool _codeChecksOut);

function vote(

uint _proposalID,

bool _supportsProposal

) onlyTokenholders returns (uint _voteID);

function executeProposal(

uint _proposalID,

bytes _transactionData

) returns (bool _success);

function splitDAO(

uint _proposalID,

address _newCurator

) returns (bool _success);

function newContract(address _newContract);

function changeAllowedRecipients(address _recipient, bool _allowed) external returns (bool _success);

function changeProposalDeposit(uint _proposalDeposit) external;

function retrieveDAOReward(bool _toMembers) external returns (bool _success);

function getMyReward() returns(bool _success);

function withdrawRewardFor(address _account) returns(bool _success);

function transferWithoutReward(address _to, uint256 _amount) returns (bool success);

function transferFromWithoutReward(

address _from,

address _to,

uint256 _amount

) returns (bool success);

function halveMinQuorum() returns (bool _success);

function numberOfProposals() constant returns (uint _numberOfProposals);

function getNewDAOAdress(uint _proposalID) constant returns (address _newDAO);

function isBlocked(address _account) internal returns (bool);

function unblockMe() returns (bool);

event ProposalAdded(

uint indexed proposalID,

address recipient,

uint amount,

bool newCurator,

string description

);

event Voted(uint indexed proposalID, bool position, address indexed voter);

event ProposalTallied(uint indexed proposalID, bool result, uint quorum);

event NewCurator(address indexed _newCurator);

event AllowedRecipientAdded(address indexed _recipient);

}

The original contract used as a starting point
for the DAO was: http://chriseth.github.io/

browser-solidity/?gist=192371538cf5e43e6dab as de-
scribed in https://blog.ethereum.org/2015/12/04.
The main feature added is the splitting mechanism and all
that comes with it. This section will define the member

variables and functions from the above smart contract one
at a time.

The array proposals holds all the proposals ever made.
The integer minQuorumDivisor is used to calculate the

quorum needed for a proposal to pass. It is set to 5, but

http://chriseth.github.io/browser-solidity/?gist=192371538cf5e43e6dab
http://chriseth.github.io/browser-solidity/?gist=192371538cf5e43e6dab
https://blog.ethereum.org/2015/12/04

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 7

will double in the case a quorum has not been reached for
over a year.

The integer lastTimeMinQuorumMet keeps track of the
last time the quorum was reached.

The address curator is set at the creation of the DAO
and defines the Curator.

The list allowedRecipients is commonly referred to
as the whitelist. The DAO can only send transactions to
itself, the curator, extraBalance and addresses in the
whitelist. Only the curator can add/remove addresses
to/from the whitelist.

The map rewardToken tracks the addresses that are
owed rewards generated by the products of the DAO.
Those addresses can only be DAOs.

The integer totalRewardToken tracks the amount of
reward tokens in existence.

The variable rewardAccount is of the type
ManagedAccount , which will be discussed in A.5. It
is used to manage the rewards which are to be distributed
to the DAO Token Holders.

Similar, DAOrewardAccount is also of the type
ManagedAccount. This account is used to receive all re-
wards from projects funded by the DAO. It will then re-
distribute them amongst all splitted DAOs as well as itself
using the function retrieveDAOReward.

The map paidOut is used to keep track how much
wei a single token holder has already retrieved from
rewardAccount.

Similar, the map DAOpaidOut is used to keep track
how much a single DAO has already received from
DAOrewardAccount.

The map blocked stores the addresses of the DAO To-
kens that have voted and therefore are not allowed to be
transferred until the vote has concluded. The address
points to the proposal ID.

The integer proposalDeposit specifies the minimum
deposit to be paid in wei for any proposal that does not
include a change of the Curator.

The integer sumOfProposalDeposits is the sum of all
proposal deposits of open proposals.

The contract daoCreator is used to create a new DAO
with the same code as this DAO, used in the case of a
split.

A single proposal has the parameters:

recipient: The address where the amount of wei will
go to if the proposal is accepted.

amount: The amount of wei to transfer to
recipient if the proposal is accepted.

description: A plain text description of the pro-
posal.

votingDeadline: A unix timestamp, denoting the
end of the voting period.

open: A boolean which is false if the votes have al-
ready been counted, true otherwise.

proposalPassed: A boolean which is true if a quo-
rum has been achieved with the majority approv-
ing the proposal.

proposalHash: A hash to check va-
lidity of a proposal. Equal to
sha3(_recipient, _amount, _transactionData).

proposalDeposit: The deposit (in wei) the creator
of a proposal has send to submit a proposal. It is
taken from the msg.value of a newProposal call;

its purpose is to prevent spam. Its minimal value
is set when the contract is deployed as construc-
tor parameter. But the creator of the proposal
can send any amount above this for the deposit.
The proposals will be sorted by the proposal de-
posit in the GUI, so in the case that a proposal
is considered important, the creator of the pro-
posal can deposit extra ether to advertise their
proposal. The creator of the proposal will be re-
funded the entire deposit if quorum is reached,
if it is not reached the deposit remains with the
DAO.

newCurator: A boolean which is true if this pro-
posal assigns a new Curator.

splitData: The data used to split the DAO. This
data is gathered from proposals when they require
a new Curator.

yea: Number of tokens in favor of the proposal.
nay: Number of tokens opposed to the proposal.
votedYes: Simple mapping to check if a token

holder has voted for it.
votedNo: Simple mapping to check if a token

holder has voted against it.
creator: The address of the token holder that cre-

ated the proposal.

The split data structure is used to split the DAO. It
contains:

splitBalance: The balance of the current DAO mi-
nus the proposal deposit at the time of split.

totalSupply: The total amount of DAO tokens in
existence at the time of the split.

rewardToken: The amount of reward tokens
owned by the original DAO at the time of split.

newDAO: The address of the new DAO contract
(0 if not created yet).

Those are all the member variables which are stored
in this smart contract on the blockchain. This informa-
tion can at any time be read from the blockchain using an
Ethereum client.

This section will discuss the functions of the DAO con-
tract in detail. Many of the member variables that are
used in this contract are defined in one of the other three
contracts.

There is a special function which is called the construc-
tor. It has the same name as the contract “DAO.” This
function is only executed once, when the DAO is created.
In the DAO constructor, the following variables are set:

• curator

• daoCreator

• proposalDeposit

• rewardAccount

• DAOrewardAccount

• minTokensToCreate

• closingTime

• privateCreation

• lastTimeMinQuorumMet

• minQuorumDivisor

• allowedRecipients

In order to interact with the smart contract the follow-
ing functions are used:

fallback function. The fallback function is a function with-
out a specific name. It is called when the contract receives

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 8

a transaction without data (a pure value transfer). There
are no direct arguments for this function. The fallback
function will call createTokenProxy passing the address
of the sender as an argument during the Creation Phase.
This will trigger the immediate creation of tokens. In
order to protect users, this function will send the ether
received after the end of the Creation Phase back to the
sender for a time period of 40 days. After which this func-
tion is repurposed to receive ether as simple deposit to the
DAO using the function receiveEther.

receiveEther. A simple function used to receive ether. It
does nothing but return true when the DAO receives ether.

newProposal. This function is used to create a new pro-
posal. The arguments of the function are:

recipient: The address of the recipient of the ether
in the proposal (has to be the DAO address itself,
the current Curator or an address on the whitelist
allowedRecipients).

amount: The amount of wei to be sent in the pro-
posed transaction.

description: A string describing the proposal.
transactionData: The data of the proposed trans-

action.
debatingPeriod: The amount of time to debate

the proposal, at least 2 weeks for a normal pro-
posal and at least 1 week for a new Curator pro-
posal.

newCurator: A boolean defining whether this pro-
posal is for a new Curator or not.

After checking the sanity of the proposal (see code), this
function creates a proposal which is open for voting for a
certain amount of time. The function will return a pro-
posal ID which is used to vote.

checkProposalCode. This function is used to check that a
certain proposal ID matches a certain transaction. The
arguments of the function are:

proposalID: The proposal ID.
recipient: The address of the recipient of the pro-

posed transaction.
amount: The amount of wei to be sent with the

proposed transaction.
transactionData: The data of the proposed trans-

action.

If the recipient, the amount and the transactionData

match the proposal ID, the function will return true ,
otherwise it will return false. This will be used to verify
that the proposal ID matches what the DAO token holder
thinks they are voting on.

vote. This function is used to vote on a proposal. The
arguments of the function are:

proposalID: The proposal ID.
supportsProposal: A boolean Yes/No does the

DAO token holder support the proposal

The function simply checks whether the sender has yet
to vote and whether the proposal is still open for voting.
If both requirements are met, it records the vote in the
storage of the contract. The tokens used to vote will be
blocked, meaning they can not be transferred until the
proposal is closed. This is to avoid voting several times
with different sender addresses.

executeProposal. This function can be called by anyone.
It counts the votes, in order to check whether the quorum
is met, and executes the proposal if it passed, unless it is
a proposal for a new Curator, than it does nothing. The
arguments of the function are:

proposalID: The proposal ID.
transactionData: The data of the proposed trans-

action

The function checks whether the voting deadline has
passed and that the transactionData matches the pro-
posal ID. Then it checks whether the quorum has been met
(see Eq. 1) and if the proposal had a majority of support.
If this is the case, it executes the proposal and refunds the
proposal deposit. If the quorum has been achieved, but
the proposal was declined by the majority of the voters,
the proposal deposit is refunded and the proposal closes.

splitDAO. After a new Curator has been proposed, and
the debating period in which the token holders could vote
for or against the proposal has passed, this function is
called by each of the DAO token holders that want to
leave the current DAO and move to a new DAO with the
proposed new Curator. This function creates a new DAO
and moves a portion of the ether, as well as a portion of
the reward tokens to the new DAO. The arguments are:

proposalID: The proposal ID.
newCurator: The address of the new Curator of

the new DAO.

After a sanity check (see code), this function will create
the new DAO if it hasnt already been created using the
contract daoCreator, updates the split data stored in the
proposal and stores the address of the new DAO in the
split data. This function moves the portion of ether that
belongs to the caller of this function in the original DAO
to the new DAO. This ether amount is denoted by Ξsender,
stated in wei and is calculated as follows:

(4) Ξsender = ΞDAO · Tsender/Ttotal

Here Tsender is the amount of tokens of the caller of the
function and ΞDAO is the balance of the DAO at the time
of the split. This will be used to effectively create tokens in
the newly created DAO and fuel the new DAO just as the
original DAO was fueled. In addition to the ether which
is moved to the new DAO, the reward tokens Rsender are
also transferred. They are calculated as follows:

(5) Rsender = RDAO · Tsender/Ttotal

Where RDAO is the amount of reward tokens owned by the
original DAO at the time of the split. These tokens allow
the new DAO to retrieve their portion of the reward us-
ing the retrieveDAOReward function of the original DAO.
At the end of this process all original DAO tokens of the
sender account are destroyed. It is important to notice
that in all integer division descirbed above, there may be
remainders which stay with the DAO.

newContract. This function can only be called by the
DAO itself (through a proposal and a vote) and is used to
move all remaining ether, as well as all rewardTokens to
a new address. This is used to update the contract. The
new address needs to be approved by the Curator.

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 9

transfer and transferFrom. These functions overload the
functions defined in the Token contract. They do call
transfer / transferFrom function in the Token con-
tract, but they additionally transfer information about
the already paid out rewards attached to the tokens being
transferred using the transferPaidOut function.

transferPaidOut. This function is called when making any
transfer of DAO tokens using transfer or transferFrom

and it updates the array paidOut to track the amount of
rewards which has been paid out already, P , and is calcu-
lated as follows:

(6) P = Pfrom · Tamount/Tfrom

Here Pfrom is the total amount of ether which has been
paid out to the from address (the sender), Tamount is the
amount of tokens to be transferred and Tfrom is the amount
of tokens owned by the from address.

transferWithoutReward and transferFromWithoutReward.
The same as transfer and transferFrom, but it calls
getMyReward prior to that.

getMyReward. Calls withdrawRewardFor with the sender
as the parameter. This is used to withdraw the por-
tion of the rewards which belong to the sender from the
rewardAccount.

withdrawRewardFor. This function is used to retrieve the
portion of the rewards in the rewardAccount which belong
to the address given as a parameter. The amount of ether
Ξreward which is then sent to the DAO token holder that
calls this function is:
(7)
Ξreward = Tsender · ΞrewardAccount/Ttotal − ΞpaidOut[sender]

Here ΞrewardAccount is the total rewards ever received by
the rewardAccount and ΞpaidOut[sender] is the total amount
of wei which has already been paid out to the DAO token

holder address, which is given as a parameter. The reward
tokens are further elaborated in section 8.

retrieveDAOReward. This function, when called by a
DAO, sends the rewards which belong to this DAO from
DAOrewardAccount to either the DAO itself, or to the
rewardAccount of the respective DAO in order to be dis-
tributed among its token holders, depending on the pa-
rameter _toMembers.

changeAllowedRecipients. This function can add/remove
an address to/from the whitelist, allowedRecipients. It
can only be executed by the Curator.

halveMinQuorum. When called, halves the minimum quo-
rum in the case it has not been met for over 52 weeks, by
doubling minQuorumDivisor. Also the curator can call
this function without the 52 weeks limit, but not more
than once every other week.

numberOfProposals. Returns the total number of propos-
als ever created.

getNewDAOAdress. This is just a helper function to read
the address of a newly created ‘split DAO‘. It gets the pro-
posal ID which was used for the split as input parameter
and returns the address of the new DAO.

isBlocked. This function returns true when the address
given as parameter is currently blocked to transfer tokens
due to an ongoing vote it has participated in, otherwise it
returns false. It also unblocks the tokens in the case the
voting deadline of the proposal is over.

unblockMe. Calling isBlocked with the address of the
sender.

changeProposalDeposit. This function changes the param-
eter proposalDeposit. It can only be called by the DAO
through a transaction which was proposed and voted for
by a majority of the token holders.

6.4. Managed Account.

contract ManagedAccountInterface {

address public owner;

bool public payOwnerOnly;

uint public accumulatedInput;

function payOut(address _recipient, uint _amount) returns (bool);

event PayOut(address _recipient, uint _amount);

}

This contract is used to manage the rewards and the
extraBalance (as explained in section 5). It has two mem-
ber variables:

The address owner, is the only address with permission
to withdraw from that account (in our case the DAO) and
send ether to another address using the payOut function.

The bool payOwnerOnly specifies whether the owner is
the only address which can receive ether from this account.

The integer, accumulatedInput, represents the total
sum of ether (in wei) which has been sent to this contract
so far.

The fallback function is called when the contract re-
ceives a transaction without data (a pure value transfer).
There are no direct arguments for this function. When

it is called it counts the amount of ether it receives and
stores it in accumulatedInput.

The function payOut can only be executed by the owner
(in our case the DAO). It has two arguments: recipient

and amount. It is used to send amount wei to a recipient

and is called by getMyReward in the DAO contract.

7. Reward Tokens

This section gives a description of how reward tokens
are implemented in this contract. Much of the informa-
tion has already been explained, but it is restated here for
clarity.

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 10

Reward tokens are used to divide the ether sent to
DAOrewardAccount amongst the various DAOs that own
reward tokens. Reward tokens are only transferred in the
event of a DAO split or an update of the contract, they
can never be owned by anything other than the original
DAO or a fork of the original DAO that generated the
reward tokens.

Reward tokens are generated when the DAO makes
any transaction spending ether. When the DAOs prod-
ucts send ether back to the DAO, the ether is held within
DAOrewardAccount. The DAO can use these rewards to
fund new proposals or to fairly distribute the rewards to
the reward token holders (using a proposal which gets
voted on by the DAO token holders).

Then the token holders of the DAOs will be able
to claim the ether they have earned for their contri-
bution to the original DAO that issued the reward to-
ken. To do this the DAO retrieve its rewards by cal-
lling the retrieveDAOReward function, with the paramter
_toMembers set to true, which send the rewards to the
rewardAccount (a ManagedAccount contract) and keeps
track of the payouts in DAOpaidOut. Then and only then
will the token holders of the DAOs be able to call the
getMyReward function and receive their ether.

These payouts are tracked by the map paidOut which
keeps track of which token holders have claimed their fair
portion of the rewards. This process guarantees that any
DAO token holder whose ether was spent building a prod-
uct will receive the rewards promised to them from that
product even if they decide to split from the DAO.

8. Split

This section formally describes a few important param-
eters and their behavior during a split.

The total amount of DAO tokens totalSupply is de-
fined as follows:

(8) Ttotal =

2256−1∑
i=0

Ti

Where Ti is the amount of DAO tokens owned by an ad-
dress i (balances[i]). Note that 2256 is the total number
of possible addresses in Ethereum. Similarly, the amount
of reward tokens Rtotal is defined as follows:
(9)

Rtotal =

2256−1∑
i=0

Ri =

numProposals∑
p=0;p.proposalPassed=true

p.amount

For every passed proposal that sends ether out of the
DAO, an amount of reward tokens equal to the amount
being spent (in wei) is created.

Lets assume that during the split, a fraction of DAO
tokens, X, changes the Curator and leaves the DAO. The
new DAO created receives X · ΞDAO pre, a portion of the
remaining ether from the original DAO.

(10) ΞDAO post = (1 −X) · ΞDAO pre

Here ΞDAO pre is the ether balance of the original DAO
before the split and ΞDAO post is the ether balance of the
original DAO after the split.

A portion of the reward tokens is transferred to the
new DAO in a very similar manner:

(11) RDAO post = (1 −X) ·RDAO pre

Here RDAO is the amount of reward tokens owned by the
DAO (prior to the first split 100% of all rewards tokens
ever created are owned by the DAO).

(12) RnewDAO = (X) ·RDAO pre

The number of reward tokens owned by the new DAO are
denoted by RnewDAO. The total amount of reward tokens
Rtotal stays constant during the split, no reward tokens
are ever destroyed.

The original DAO tokens of the accounts that con-
firmed the new Curator are destroyed. Hence:

(13) Ttotal post = (1 −X) · Ttotal pre

This process allows DAO token holders to retrieve their
ether from the DAO at any time without losing out on any
of the future rewards.They are entitled to receive even if
they choose to leave the DAO.

9. Updates

Although the code of the contract specified at a certain
address in the Ethereum blockchain can not be changed,
there might still be a need for a single member or the DAO
as a whole to change the contracts. Every single member
can always split the DAO as described above and move
their funds to a new DAO. From there they can move their
funds to another new DAO with a new smart contract.
But in order to use a new code for the complete DAO one
can simply create a new DAO contract with all the needed
features and deploy it on the blockchain, and make a pro-
posal to call the newContract function with the address
of the new contract as parameter. If accepted, the com-
plete DAO moves to the new contract, meaning, all ether
and reward tokens are transferred to the new contract.
In order to use the same underlying DAO tokens there,
one can use the approve function and give the new DAO
the right to move the tokens. In the new contract this
right should only be usable in restricted functions which
are only callable by the owner of the tokens. Another op-
tion is to create new tokens in the new contract based on
the token distribution in the old contract. This can also
be achieved by a proof that the old tokens are destroyed
(sending to the 0 address). This process allows for the
DAO to maintain static immutable code on the Ethereum
blockchain, while still being able to be updated if the need
arises.

10. Acknowledgements

I want to thank Stephan Tual and Simon Jentzsch for
fruitful discussions and corrections, as well as Gavin Wood
and Christian Reitwiessner for a review of the contracts
and the development of Solidity, the programing language
used to write the contracts.

Special thanks goes to Yoichi Hirai and Lefteris Kara-
petsas for reviewing the smart contracts and making sig-
nificant improvements.

I also want to thank Griff Green for reviewing and edit-
ing the paper.

Last but not least I want to thank our community
which has given feedback, corrections and encouragement.

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 11

References

John Biggs. When Crowdfunding Fails The Backers Are Left With No Way Out. 2015. URL http://techcrunch.com/

2015/11/19/when-crowdfunding-fails-the-backers-are-left-with-no-way-out/.
Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. 2013. URL
https://github.com/ethereum/wiki/wiki/White-Paper.

Vitalik Buterin. The Subjectivity / Exploitability Tradeoff. 2015. URL https://blog.ethereum.org/2015/02/14/

subjectivity-exploitability-tradeoff/.
Griff Green. private discussion. 2016.
Kate Knibbs. The 9 Most Disgraceful Crowdfunding Failures of 2015. 2015. URL http://gizmodo.com/

the-9-most-disgraceful-crowdfunding-failures-of-2015-1747957776.
Massolution. 2015CF - Crowdfunding Industry Report. 2015. URL http://reports.crowdsourcing.org/index.php?

route=product/product&path=0_20&product_id=54.
Mark Miller. The Future of Law. In paper delivered at the Extro 3 Conference (August 9), 1997.
Christian Reitwiessner and Gavin Wood. Solidity. 2015. URL http://solidity.readthedocs.org/.
Nick Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9), 1997.
Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger. 2014. URL http://gavwood.com/

paper.pdf.

Appendix A. Contracts

A.1. Token.

contract TokenInterface {

mapping (address => uint256) balances;

mapping (address => mapping (address => uint256)) allowed;

/// @return Total amount of tokens

uint256 public totalSupply;

/// @param _owner The address from which the balance will be retrieved

/// @return The balance

function balanceOf(address _owner) constant returns (uint256 balance);

/// @notice Send ‘_amount‘ tokens to ‘_to‘ from ‘msg.sender‘

/// @param _to The address of the recipient

/// @param _amount The amount of tokens to be transferred

/// @return Whether the transfer was successful or not

function transfer(address _to, uint256 _amount) returns (bool success);

/// @notice Send ‘_amount‘ tokens to ‘_to‘ from ‘_from‘ on the condition it

/// is approved by ‘_from‘

/// @param _from The address of the sender

/// @param _to The address of the recipient

/// @param _amount The amount of tokens to be transferred

/// @return Whether the transfer was successful or not

function transferFrom(address _from, address _to, uint256 _amount)

returns (bool success);

/// @notice ‘msg.sender‘ approves ‘_spender‘ to spend ‘_amount‘ tokens on

/// its behalf

/// @param _spender The address of the account able to transfer the tokens

/// @param _amount The amount of tokens to be approved for transfer

/// @return Whether the approval was successful or not

function approve(address _spender, uint256 _amount) returns (bool success);

/// @param _owner The address of the account owning tokens

/// @param _spender The address of the account able to transfer the tokens

/// @return Amount of remaining tokens of _owner that _spender is allowed

/// to spend

function allowance(address _owner, address _spender)

constant

returns (uint256 remaining);

event Transfer(address indexed _from, address indexed _to, uint256 _amount);

http://techcrunch.com/2015/11/19/when-crowdfunding-fails-the-backers-are-left-with-no-way-out/
http://techcrunch.com/2015/11/19/when-crowdfunding-fails-the-backers-are-left-with-no-way-out/
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/02/14/subjectivity-exploitability-tradeoff/
https://blog.ethereum.org/2015/02/14/subjectivity-exploitability-tradeoff/
http://gizmodo.com/the-9-most-disgraceful-crowdfunding-failures-of-2015-1747957776
http://gizmodo.com/the-9-most-disgraceful-crowdfunding-failures-of-2015-1747957776
http://reports.crowdsourcing.org/index.php?route=product/product&path=0_20&product_id=54
http://reports.crowdsourcing.org/index.php?route=product/product&path=0_20&product_id=54
http://solidity.readthedocs.org/
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 12

event Approval(

address indexed _owner,

address indexed _spender,

uint256 _amount

);

}

contract Token is TokenInterface {

// Protects users by preventing the execution of method calls that

// inadvertently also transferred ether

modifier noEther() {if (msg.value > 0) throw; _}

function balanceOf(address _owner) constant returns (uint256 balance) {

return balances[_owner];

}

function transfer(address _to, uint256 _amount)

noEther

returns (bool success)

{

if (balances[msg.sender] >= _amount && _amount > 0) {

balances[msg.sender] -= _amount;

balances[_to] += _amount;

Transfer(msg.sender, _to, _amount);

return true;

}

else

return false;

}

function transferFrom(address _from, address _to, uint256 _amount)

noEther

returns (bool success)

{

if (balances[_from] >= _amount

&& allowed[_from][msg.sender] >= _amount

&& _amount > 0

) {

balances[_to] += _amount;

balances[_from] -= _amount;

allowed[_from][msg.sender] -= _amount;

Transfer(_from, _to, _amount);

return true;

}

else

return false;

}

function approve(address _spender, uint256 _amount) returns (bool success) {

allowed[msg.sender][_spender] = _amount;

Approval(msg.sender, _spender, _amount);

return true;

}

function allowance(address _owner, address _spender)

constant

returns (uint256 remaining)

{

return allowed[_owner][_spender];

}

}

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 13

A.2. TokenCreation.

contract TokenCreationInterface {

// End of token creation, in Unix time

uint public closingTime;

// Minimum fueling goal of the token creation, denominated in tokens to

// be created

uint public minTokensToCreate;

// True if the DAO reached its minimum fueling goal, false otherwise

bool public isFueled;

// For DAO splits - if privateCreation is 0, then it is a public token

// creation, otherwise only the address stored in privateCreation is

// allowed to create tokens

address public privateCreation;

// hold extra ether which has been sent after the DAO token

// creation rate has increased

ManagedAccount public extraBalance;

// tracks the amount of wei given from each contributor (used for refund)

mapping (address => uint256) weiGiven;

/// @dev Constructor setting the minimum fueling goal and the

/// end of the Token Creation

/// @param _minTokensToCreate Minimum required wei-equivalent tokens

/// to be created for a successful DAO Token Creation

/// @param _closingTime Date (in Unix time) of the end of the Token Creation

/// @param _privateCreation Zero means that the creation is public. A

/// non-zero address represents the only address that can create Tokens

/// (the address can also create Tokens on behalf of other accounts)

// This is the constructor: it can not be overloaded so it is commented out

// function TokenCreation(

// uint _minTokensTocreate,

// uint _closingTime,

// address _privateCreation

//);

/// @notice Create Token with ‘_tokenHolder‘ as the initial owner of the Token

/// @param _tokenHolder The address of the Tokens’s recipient

/// @return Whether the token creation was successful

function createTokenProxy(address _tokenHolder) returns (bool success);

/// @notice Refund ‘msg.sender‘ in the case the Token Creation did

/// not reach its minimum fueling goal

function refund();

/// @return The divisor used to calculate the token creation rate during

/// the creation phase

function divisor() returns (uint divisor);

event FuelingToDate(uint value);

event CreatedToken(address indexed to, uint amount);

event Refund(address indexed to, uint value);

}

contract TokenCreation is TokenCreationInterface, Token {

function TokenCreation(

uint _minTokensToCreate,

uint _closingTime,

address _privateCreation) {

closingTime = _closingTime;

minTokensToCreate = _minTokensToCreate;

privateCreation = _privateCreation;

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 14

extraBalance = new ManagedAccount(address(this), true);

}

function createTokenProxy(address _tokenHolder) returns (bool success) {

if (now < closingTime && msg.value > 0

&& (privateCreation == 0 || privateCreation == msg.sender)) {

uint token = (msg.value * 20) / divisor();

extraBalance.call.value(msg.value - token)();

balances[_tokenHolder] += token;

totalSupply += token;

weiGiven[_tokenHolder] += msg.value;

CreatedToken(_tokenHolder, token);

if (totalSupply >= minTokensToCreate && !isFueled) {

isFueled = true;

FuelingToDate(totalSupply);

}

return true;

}

throw;

}

function refund() noEther {

if (now > closingTime && !isFueled) {

// Get extraBalance - will only succeed when called for the first time

extraBalance.payOut(address(this), extraBalance.accumulatedInput());

// Execute refund

if (msg.sender.call.value(weiGiven[msg.sender])()) {

Refund(msg.sender, weiGiven[msg.sender]);

totalSupply -= balances[msg.sender];

balances[msg.sender] = 0;

weiGiven[msg.sender] = 0;

}

}

}

function divisor() returns (uint divisor) {

// The number of (base unit) tokens per wei is calculated

// as ‘msg.value‘ * 20 / ‘divisor‘

// The fueling period starts with a 1:1 ratio

if (closingTime - 2 weeks > now) {

return 20;

// Followed by 10 days with a daily creation rate increase of 5%

} else if (closingTime - 4 days > now) {

return (20 + (now - (closingTime - 2 weeks)) / (1 days));

// The last 4 days there is a constant creation rate ratio of 1:1.5

} else {

return 30;

}

}

}

A.3. DAO.

contract DAOInterface {

// The amount of days for which people who try to participate in the

// creation by calling the fallback function will still get their ether back

uint constant creationGracePeriod = 40 days;

// The minimum debate period that a generic proposal can have

uint constant minProposalDebatePeriod = 2 weeks;

// The minimum debate period that a split proposal can have

uint constant minSplitDebatePeriod = 1 weeks;

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 15

// Period of days inside which it’s possible to execute a DAO split

uint constant splitExecutionPeriod = 27 days;

// Period of time after which the minimum Quorum is halved

uint constant quorumHalvingPeriod = 25 weeks;

// Period after which a proposal is closed

// (used in the case ‘executeProposal‘ fails because it throws)

uint constant executeProposalPeriod = 10 days;

// Denotes the maximum proposal deposit that can be given. It is given as

// a fraction of total Ether spent plus balance of the DAO

uint constant maxDepositDivisor = 100;

// Proposals to spend the DAO’s ether or to choose a new Curator

Proposal[] public proposals;

// The quorum needed for each proposal is partially calculated by

// totalSupply / minQuorumDivisor

uint public minQuorumDivisor;

// The unix time of the last time quorum was reached on a proposal

uint public lastTimeMinQuorumMet;

// Address of the curator

address public curator;

// The whitelist: List of addresses the DAO is allowed to send ether to

mapping (address => bool) public allowedRecipients;

// Tracks the addresses that own Reward Tokens. Those addresses can only be

// DAOs that have split from the original DAO. Conceptually, Reward Tokens

// represent the proportion of the rewards that the DAO has the right to

// receive. These Reward Tokens are generated when the DAO spends ether.

mapping (address => uint) public rewardToken;

// Total supply of rewardToken

uint public totalRewardToken;

// The account used to manage the rewards which are to be distributed to the

// DAO Token Holders of this DAO

ManagedAccount public rewardAccount;

// The account used to manage the rewards which are to be distributed to

// any DAO that holds Reward Tokens

ManagedAccount public DAOrewardAccount;

// Amount of rewards (in wei) already paid out to a certain DAO

mapping (address => uint) public DAOpaidOut;

// Amount of rewards (in wei) already paid out to a certain address

mapping (address => uint) public paidOut;

// Map of addresses blocked during a vote (not allowed to transfer DAO

// tokens). The address points to the proposal ID.

mapping (address => uint) public blocked;

// The minimum deposit (in wei) required to submit any proposal that is not

// requesting a new Curator (no deposit is required for splits)

uint public proposalDeposit;

// the accumulated sum of all current proposal deposits

uint sumOfProposalDeposits;

// Contract that is able to create a new DAO (with the same code as

// this one), used for splits

DAO_Creator public daoCreator;

// A proposal with ‘newCurator == false‘ represents a transaction

// to be issued by this DAO

// A proposal with ‘newCurator == true‘ represents a DAO split

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 16

struct Proposal {

// The address where the ‘amount‘ will go to if the proposal is accepted

// or if ‘newCurator‘ is true, the proposed Curator of

// the new DAO).

address recipient;

// The amount to transfer to ‘recipient‘ if the proposal is accepted.

uint amount;

// A plain text description of the proposal

string description;

// A unix timestamp, denoting the end of the voting period

uint votingDeadline;

// True if the proposal’s votes have yet to be counted, otherwise False

bool open;

// True if quorum has been reached, the votes have been counted, and

// the majority said yes

bool proposalPassed;

// A hash to check validity of a proposal

bytes32 proposalHash;

// Deposit in wei the creator added when submitting their proposal. It

// is taken from the msg.value of a newProposal call.

uint proposalDeposit;

// True if this proposal is to assign a new Curator

bool newCurator;

// Data needed for splitting the DAO

SplitData[] splitData;

// Number of Tokens in favor of the proposal

uint yea;

// Number of Tokens opposed to the proposal

uint nay;

// Simple mapping to check if a shareholder has voted for it

mapping (address => bool) votedYes;

// Simple mapping to check if a shareholder has voted against it

mapping (address => bool) votedNo;

// Address of the shareholder who created the proposal

address creator;

}

// Used only in the case of a newCurator proposal.

struct SplitData {

// The balance of the current DAO minus the deposit at the time of split

uint splitBalance;

// The total amount of DAO Tokens in existence at the time of split.

uint totalSupply;

// Amount of Reward Tokens owned by the DAO at the time of split.

uint rewardToken;

// The new DAO contract created at the time of split.

DAO newDAO;

}

// Used to restrict access to certain functions to only DAO Token Holders

modifier onlyTokenholders {}

/// @dev Constructor setting the Curator and the address

/// for the contract able to create another DAO as well as the parameters

/// for the DAO Token Creation

/// @param _curator The Curator

/// @param _daoCreator The contract able to (re)create this DAO

/// @param _proposalDeposit The deposit to be paid for a regular proposal

/// @param _minTokensToCreate Minimum required wei-equivalent tokens

/// to be created for a successful DAO Token Creation

/// @param _closingTime Date (in Unix time) of the end of the DAO Token Creation

/// @param _privateCreation If zero the DAO Token Creation is open to public, a

/// non-zero address means that the DAO Token Creation is only for the address

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 17

// This is the constructor: it can not be overloaded so it is commented out

// function DAO(

// address _curator,

// DAO_Creator _daoCreator,

// uint _proposalDeposit,

// uint _minTokensToCreate,

// uint _closingTime,

// address _privateCreation

//);

/// @notice Create Token with ‘msg.sender‘ as the beneficiary

/// @return Whether the token creation was successful

function () returns (bool success);

/// @dev This function is used to send ether back

/// to the DAO, it can also be used to receive payments that should not be

/// counted as rewards (donations, grants, etc.)

/// @return Whether the DAO received the ether successfully

function receiveEther() returns(bool);

/// @notice ‘msg.sender‘ creates a proposal to send ‘_amount‘ Wei to

/// ‘_recipient‘ with the transaction data ‘_transactionData‘. If

/// ‘_newCurator‘ is true, then this is a proposal that splits the

/// DAO and sets ‘_recipient‘ as the new DAO’s Curator.

/// @param _recipient Address of the recipient of the proposed transaction

/// @param _amount Amount of wei to be sent with the proposed transaction

/// @param _description String describing the proposal

/// @param _transactionData Data of the proposed transaction

/// @param _debatingPeriod Time used for debating a proposal, at least 2

/// weeks for a regular proposal, 10 days for new Curator proposal

/// @param _newCurator Bool defining whether this proposal is about

/// a new Curator or not

/// @return The proposal ID. Needed for voting on the proposal

function newProposal(

address _recipient,

uint _amount,

string _description,

bytes _transactionData,

uint _debatingPeriod,

bool _newCurator

) onlyTokenholders returns (uint _proposalID);

/// @notice Check that the proposal with the ID ‘_proposalID‘ matches the

/// transaction which sends ‘_amount‘ with data ‘_transactionData‘

/// to ‘_recipient‘

/// @param _proposalID The proposal ID

/// @param _recipient The recipient of the proposed transaction

/// @param _amount The amount of wei to be sent in the proposed transaction

/// @param _transactionData The data of the proposed transaction

/// @return Whether the proposal ID matches the transaction data or not

function checkProposalCode(

uint _proposalID,

address _recipient,

uint _amount,

bytes _transactionData

) constant returns (bool _codeChecksOut);

/// @notice Vote on proposal ‘_proposalID‘ with ‘_supportsProposal‘

/// @param _proposalID The proposal ID

/// @param _supportsProposal Yes/No - support of the proposal

/// @return The vote ID.

function vote(

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 18

uint _proposalID,

bool _supportsProposal

) onlyTokenholders returns (uint _voteID);

/// @notice Checks whether proposal ‘_proposalID‘ with transaction data

/// ‘_transactionData‘ has been voted for or rejected, and executes the

/// transaction in the case it has been voted for.

/// @param _proposalID The proposal ID

/// @param _transactionData The data of the proposed transaction

/// @return Whether the proposed transaction has been executed or not

function executeProposal(

uint _proposalID,

bytes _transactionData

) returns (bool _success);

/// @notice ATTENTION! I confirm to move my remaining ether to a new DAO

/// with ‘_newCurator‘ as the new Curator, as has been

/// proposed in proposal ‘_proposalID‘. This will burn my tokens. This can

/// not be undone and will split the DAO into two DAO’s, with two

/// different underlying tokens.

/// @param _proposalID The proposal ID

/// @param _newCurator The new Curator of the new DAO

/// @dev This function, when called for the first time for this proposal,

/// will create a new DAO and send the sender’s portion of the remaining

/// ether and Reward Tokens to the new DAO. It will also burn the DAO Tokens

/// of the sender.

function splitDAO(

uint _proposalID,

address _newCurator

) returns (bool _success);

/// @dev can only be called by the DAO itself through a proposal

/// updates the contract of the DAO by sending all ether and rewardTokens

/// to the new DAO. The new DAO needs to be approved by the Curator

/// @param _newContract the address of the new contract

function newContract(address _newContract);

/// @notice Add a new possible recipient ‘_recipient‘ to the whitelist so

/// that the DAO can send transactions to them (using proposals)

/// @param _recipient New recipient address

/// @dev Can only be called by the current Curator

/// @return Whether successful or not

function changeAllowedRecipients(address _recipient, bool _allowed) external returns (bool _success);

/// @notice Change the minimum deposit required to submit a proposal

/// @param _proposalDeposit The new proposal deposit

/// @dev Can only be called by this DAO (through proposals with the

/// recipient being this DAO itself)

function changeProposalDeposit(uint _proposalDeposit) external;

/// @notice Move rewards from the DAORewards managed account

/// @param _toMembers If true rewards are moved to the actual reward account

/// for the DAO. If not then it’s moved to the DAO itself

/// @return Whether the call was successful

function retrieveDAOReward(bool _toMembers) external returns (bool _success);

/// @notice Get my portion of the reward that was sent to ‘rewardAccount‘

/// @return Whether the call was successful

function getMyReward() returns(bool _success);

/// @notice Withdraw ‘_account‘’s portion of the reward from ‘rewardAccount‘

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 19

/// to ‘_account‘’s balance

/// @return Whether the call was successful

function withdrawRewardFor(address _account) internal returns (bool _success);

/// @notice Send ‘_amount‘ tokens to ‘_to‘ from ‘msg.sender‘. Prior to this

/// getMyReward() is called.

/// @param _to The address of the recipient

/// @param _amount The amount of tokens to be transfered

/// @return Whether the transfer was successful or not

function transferWithoutReward(address _to, uint256 _amount) returns (bool success);

/// @notice Send ‘_amount‘ tokens to ‘_to‘ from ‘_from‘ on the condition it

/// is approved by ‘_from‘. Prior to this getMyReward() is called.

/// @param _from The address of the sender

/// @param _to The address of the recipient

/// @param _amount The amount of tokens to be transfered

/// @return Whether the transfer was successful or not

function transferFromWithoutReward(

address _from,

address _to,

uint256 _amount

) returns (bool success);

/// @notice Doubles the ’minQuorumDivisor’ in the case quorum has not been

/// achieved in 52 weeks

/// @return Whether the change was successful or not

function halveMinQuorum() returns (bool _success);

/// @return total number of proposals ever created

function numberOfProposals() constant returns (uint _numberOfProposals);

/// @param _proposalID Id of the new curator proposal

/// @return Address of the new DAO

function getNewDAOAddress(uint _proposalID) constant returns (address _newDAO);

/// @param _account The address of the account which is checked.

/// @return Whether the account is blocked (not allowed to transfer tokens) or not.

function isBlocked(address _account) internal returns (bool);

/// @notice If the caller is blocked by a proposal whose voting deadline

/// has exprired then unblock him.

/// @return Whether the account is blocked (not allowed to transfer tokens) or not.

function unblockMe() returns (bool);

event ProposalAdded(

uint indexed proposalID,

address recipient,

uint amount,

bool newCurator,

string description

);

event Voted(uint indexed proposalID, bool position, address indexed voter);

event ProposalTallied(uint indexed proposalID, bool result, uint quorum);

event NewCurator(address indexed _newCurator);

event AllowedRecipientChanged(address indexed _recipient, bool _allowed);

}

// The DAO contract itself

contract DAO is DAOInterface, Token, TokenCreation {

// Modifier that allows only shareholders to vote and create new proposals

modifier onlyTokenholders {

if (balanceOf(msg.sender) == 0) throw;

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 20

_

}

function DAO(

address _curator,

DAO_Creator _daoCreator,

uint _proposalDeposit,

uint _minTokensToCreate,

uint _closingTime,

address _privateCreation

) TokenCreation(_minTokensToCreate, _closingTime, _privateCreation) {

curator = _curator;

daoCreator = _daoCreator;

proposalDeposit = _proposalDeposit;

rewardAccount = new ManagedAccount(address(this), false);

DAOrewardAccount = new ManagedAccount(address(this), false);

if (address(rewardAccount) == 0)

throw;

if (address(DAOrewardAccount) == 0)

throw;

lastTimeMinQuorumMet = now;

minQuorumDivisor = 5; // sets the minimal quorum to 20%

proposals.length = 1; // avoids a proposal with ID 0 because it is used

allowedRecipients[address(this)] = true;

allowedRecipients[curator] = true;

}

function () returns (bool success) {

if (now < closingTime + creationGracePeriod && msg.sender != address(extraBalance))

return createTokenProxy(msg.sender);

else

return receiveEther();

}

function receiveEther() returns (bool) {

return true;

}

function newProposal(

address _recipient,

uint _amount,

string _description,

bytes _transactionData,

uint _debatingPeriod,

bool _newCurator

) onlyTokenholders returns (uint _proposalID) {

// Sanity check

if (_newCurator && (

_amount != 0

|| _transactionData.length != 0

|| _recipient == curator

|| msg.value > 0

|| _debatingPeriod < minSplitDebatePeriod)) {

throw;

} else if (

!_newCurator

&& (!isRecipientAllowed(_recipient) || (_debatingPeriod < minProposalDebatePeriod))

) {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 21

throw;

}

if (_debatingPeriod > 8 weeks)

throw;

if (!isFueled

|| now < closingTime

|| (msg.value < proposalDeposit && !_newCurator)) {

throw;

}

if (now + _debatingPeriod < now) // prevents overflow

throw;

// to prevent a 51% attacker to convert the ether into deposit

if (msg.sender == address(this))

throw;

_proposalID = proposals.length++;

Proposal p = proposals[_proposalID];

p.recipient = _recipient;

p.amount = _amount;

p.description = _description;

p.proposalHash = sha3(_recipient, _amount, _transactionData);

p.votingDeadline = now + _debatingPeriod;

p.open = true;

//p.proposalPassed = False; // that’s default

p.newCurator = _newCurator;

if (_newCurator)

p.splitData.length++;

p.creator = msg.sender;

p.proposalDeposit = msg.value;

sumOfProposalDeposits += msg.value;

ProposalAdded(

_proposalID,

_recipient,

_amount,

_newCurator,

_description

);

}

function checkProposalCode(

uint _proposalID,

address _recipient,

uint _amount,

bytes _transactionData

) noEther constant returns (bool _codeChecksOut) {

Proposal p = proposals[_proposalID];

return p.proposalHash == sha3(_recipient, _amount, _transactionData);

}

function vote(

uint _proposalID,

bool _supportsProposal

) onlyTokenholders noEther returns (uint _voteID) {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 22

Proposal p = proposals[_proposalID];

if (p.votedYes[msg.sender]

|| p.votedNo[msg.sender]

|| now >= p.votingDeadline) {

throw;

}

if (_supportsProposal) {

p.yea += balances[msg.sender];

p.votedYes[msg.sender] = true;

} else {

p.nay += balances[msg.sender];

p.votedNo[msg.sender] = true;

}

if (blocked[msg.sender] == 0) {

blocked[msg.sender] = _proposalID;

} else if (p.votingDeadline > proposals[blocked[msg.sender]].votingDeadline) {

// this proposal’s voting deadline is further into the future than

// the proposal that blocks the sender so make it the blocker

blocked[msg.sender] = _proposalID;

}

Voted(_proposalID, _supportsProposal, msg.sender);

}

function executeProposal(

uint _proposalID,

bytes _transactionData

) noEther returns (bool _success) {

Proposal p = proposals[_proposalID];

uint waitPeriod = p.newCurator

? splitExecutionPeriod

: executeProposalPeriod;

// If we are over deadline and waiting period, assert proposal is closed

if (p.open && now > p.votingDeadline + waitPeriod) {

closeProposal(_proposalID);

return;

}

// Check if the proposal can be executed

if (now < p.votingDeadline // has the voting deadline arrived?

// Have the votes been counted?

|| !p.open

// Does the transaction code match the proposal?

|| p.proposalHash != sha3(p.recipient, p.amount, _transactionData)) {

throw;

}

// If the curator removed the recipient from the whitelist, close the proposal

// in order to free the deposit and allow unblocking of voters

if (!isRecipientAllowed(p.recipient)) {

closeProposal(_proposalID);

p.creator.send(p.proposalDeposit);

return;

}

bool proposalCheck = true;

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 23

if (p.amount > actualBalance())

proposalCheck = false;

uint quorum = p.yea + p.nay;

// require 53% for calling newContract()

if (_transactionData.length >= 4 && _transactionData[0] == 0x68

&& _transactionData[1] == 0x37 && _transactionData[2] == 0xff

&& _transactionData[3] == 0x1e

&& quorum < minQuorum(actualBalance() + rewardToken[address(this)])) {

proposalCheck = false;

}

if (quorum >= minQuorum(p.amount)) {

if (!p.creator.send(p.proposalDeposit))

throw;

lastTimeMinQuorumMet = now;

// set the minQuorum to 20% again, in the case it has been reached

if (quorum > totalSupply / 5)

minQuorumDivisor = 5;

}

// Execute result

if (quorum >= minQuorum(p.amount) && p.yea > p.nay && proposalCheck) {

if (!p.recipient.call.value(p.amount)(_transactionData))

throw;

p.proposalPassed = true;

_success = true;

// only create reward tokens when ether is not sent to the DAO itself and

// related addresses. Proxy addresses should be forbidden by the curator.

if (p.recipient != address(this) && p.recipient != address(rewardAccount)

&& p.recipient != address(DAOrewardAccount)

&& p.recipient != address(extraBalance)

&& p.recipient != address(curator)) {

rewardToken[address(this)] += p.amount;

totalRewardToken += p.amount;

}

}

closeProposal(_proposalID);

// Initiate event

ProposalTallied(_proposalID, _success, quorum);

}

function closeProposal(uint _proposalID) internal {

Proposal p = proposals[_proposalID];

if (p.open)

sumOfProposalDeposits -= p.proposalDeposit;

p.open = false;

}

function splitDAO(

uint _proposalID,

address _newCurator

) noEther onlyTokenholders returns (bool _success) {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 24

Proposal p = proposals[_proposalID];

// Sanity check

if (now < p.votingDeadline // has the voting deadline arrived?

//The request for a split expires XX days after the voting deadline

|| now > p.votingDeadline + splitExecutionPeriod

// Does the new Curator address match?

|| p.recipient != _newCurator

// Is it a new curator proposal?

|| !p.newCurator

// Have you voted for this split?

|| !p.votedYes[msg.sender]

// Did you already vote on another proposal?

|| (blocked[msg.sender] != _proposalID && blocked[msg.sender] != 0)) {

throw;

}

// If the new DAO doesn’t exist yet, create the new DAO and store the

// current split data

if (address(p.splitData[0].newDAO) == 0) {

p.splitData[0].newDAO = createNewDAO(_newCurator);

// Call depth limit reached, etc.

if (address(p.splitData[0].newDAO) == 0)

throw;

// should never happen

if (this.balance < sumOfProposalDeposits)

throw;

p.splitData[0].splitBalance = actualBalance();

p.splitData[0].rewardToken = rewardToken[address(this)];

p.splitData[0].totalSupply = totalSupply;

p.proposalPassed = true;

}

// Move ether and assign new Tokens

uint fundsToBeMoved =

(balances[msg.sender] * p.splitData[0].splitBalance) /

p.splitData[0].totalSupply;

if (p.splitData[0].newDAO.createTokenProxy.value(fundsToBeMoved)(msg.sender) == false)

throw;

// Assign reward rights to new DAO

uint rewardTokenToBeMoved =

(balances[msg.sender] * p.splitData[0].rewardToken) /

p.splitData[0].totalSupply;

uint paidOutToBeMoved = DAOpaidOut[address(this)] * rewardTokenToBeMoved /

rewardToken[address(this)];

rewardToken[address(p.splitData[0].newDAO)] += rewardTokenToBeMoved;

if (rewardToken[address(this)] < rewardTokenToBeMoved)

throw;

rewardToken[address(this)] -= rewardTokenToBeMoved;

DAOpaidOut[address(p.splitData[0].newDAO)] += paidOutToBeMoved;

if (DAOpaidOut[address(this)] < paidOutToBeMoved)

throw;

DAOpaidOut[address(this)] -= paidOutToBeMoved;

// Burn DAO Tokens

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 25

Transfer(msg.sender, 0, balances[msg.sender]);

withdrawRewardFor(msg.sender); // be nice, and get his rewards

totalSupply -= balances[msg.sender];

balances[msg.sender] = 0;

paidOut[msg.sender] = 0;

return true;

}

function newContract(address _newContract){

if (msg.sender != address(this) || !allowedRecipients[_newContract]) return;

// move all ether

if (!_newContract.call.value(address(this).balance)()) {

throw;

}

//move all reward tokens

rewardToken[_newContract] += rewardToken[address(this)];

rewardToken[address(this)] = 0;

DAOpaidOut[_newContract] += DAOpaidOut[address(this)];

DAOpaidOut[address(this)] = 0;

}

function retrieveDAOReward(bool _toMembers) external noEther returns (bool _success) {

DAO dao = DAO(msg.sender);

if ((rewardToken[msg.sender] * DAOrewardAccount.accumulatedInput()) /

totalRewardToken < DAOpaidOut[msg.sender])

throw;

uint reward =

(rewardToken[msg.sender] * DAOrewardAccount.accumulatedInput()) /

totalRewardToken - DAOpaidOut[msg.sender];

if(_toMembers) {

if (!DAOrewardAccount.payOut(dao.rewardAccount(), reward))

throw;

}

else {

if (!DAOrewardAccount.payOut(dao, reward))

throw;

}

DAOpaidOut[msg.sender] += reward;

return true;

}

function getMyReward() noEther returns (bool _success) {

return withdrawRewardFor(msg.sender);

}

function withdrawRewardFor(address _account) noEther internal returns (bool _success) {

if ((balanceOf(_account) * rewardAccount.accumulatedInput()) / totalSupply < paidOut[_account])

throw;

uint reward =

(balanceOf(_account) * rewardAccount.accumulatedInput()) / totalSupply - paidOut[_account];

if (!rewardAccount.payOut(_account, reward))

throw;

paidOut[_account] += reward;

return true;

}

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 26

function transfer(address _to, uint256 _value) returns (bool success) {

if (isFueled

&& now > closingTime

&& !isBlocked(msg.sender)

&& transferPaidOut(msg.sender, _to, _value)

&& super.transfer(_to, _value)) {

return true;

} else {

throw;

}

}

function transferWithoutReward(address _to, uint256 _value) returns (bool success) {

if (!getMyReward())

throw;

return transfer(_to, _value);

}

function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {

if (isFueled

&& now > closingTime

&& !isBlocked(_from)

&& transferPaidOut(_from, _to, _value)

&& super.transferFrom(_from, _to, _value)) {

return true;

} else {

throw;

}

}

function transferFromWithoutReward(

address _from,

address _to,

uint256 _value

) returns (bool success) {

if (!withdrawRewardFor(_from))

throw;

return transferFrom(_from, _to, _value);

}

function transferPaidOut(

address _from,

address _to,

uint256 _value

) internal returns (bool success) {

uint transferPaidOut = paidOut[_from] * _value / balanceOf(_from);

if (transferPaidOut > paidOut[_from])

throw;

paidOut[_from] -= transferPaidOut;

paidOut[_to] += transferPaidOut;

return true;

}

function changeProposalDeposit(uint _proposalDeposit) noEther external {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 27

if (msg.sender != address(this) || _proposalDeposit > (actualBalance() + rewardToken[address(this)])

/ maxDepositDivisor) {

throw;

}

proposalDeposit = _proposalDeposit;

}

function changeAllowedRecipients(address _recipient, bool _allowed) noEther external returns (bool _success) {

if (msg.sender != curator)

throw;

allowedRecipients[_recipient] = _allowed;

AllowedRecipientChanged(_recipient, _allowed);

return true;

}

function isRecipientAllowed(address _recipient) internal returns (bool _isAllowed) {

if (allowedRecipients[_recipient]

|| (_recipient == address(extraBalance)

// only allowed when at least the amount held in the

// extraBalance account has been spent from the DAO

&& totalRewardToken > extraBalance.accumulatedInput()))

return true;

else

return false;

}

function actualBalance() constant returns (uint _actualBalance) {

return this.balance - sumOfProposalDeposits;

}

function minQuorum(uint _value) internal constant returns (uint _minQuorum) {

// minimum of 20% and maximum of 53.33%

return totalSupply / minQuorumDivisor +

(_value * totalSupply) / (3 * (actualBalance() + rewardToken[address(this)]));

}

function halveMinQuorum() returns (bool _success) {

// this can only be called after ‘quorumHalvingPeriod‘ has passed or at anytime

// by the curator with a delay of at least ‘minProposalDebatePeriod‘ between the calls

if ((lastTimeMinQuorumMet < (now - quorumHalvingPeriod) || msg.sender == curator)

&& lastTimeMinQuorumMet < (now - minProposalDebatePeriod)) {

lastTimeMinQuorumMet = now;

minQuorumDivisor *= 2;

return true;

} else {

return false;

}

}

function createNewDAO(address _newCurator) internal returns (DAO _newDAO) {

NewCurator(_newCurator);

return daoCreator.createDAO(_newCurator, 0, 0, now + splitExecutionPeriod);

}

function numberOfProposals() constant returns (uint _numberOfProposals) {

// Don’t count index 0. It’s used by isBlocked() and exists from start

return proposals.length - 1;

}

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 28

function getNewDAOAddress(uint _proposalID) constant returns (address _newDAO) {

return proposals[_proposalID].splitData[0].newDAO;

}

function isBlocked(address _account) internal returns (bool) {

if (blocked[_account] == 0)

return false;

Proposal p = proposals[blocked[_account]];

if (now > p.votingDeadline) {

blocked[_account] = 0;

return false;

} else {

return true;

}

}

function unblockMe() returns (bool) {

return isBlocked(msg.sender);

}

}

contract DAO_Creator {

function createDAO(

address _curator,

uint _proposalDeposit,

uint _minTokensToCreate,

uint _closingTime

) returns (DAO _newDAO) {

return new DAO(

_curator,

DAO_Creator(this),

_proposalDeposit,

_minTokensToCreate,

_closingTime,

msg.sender

);

}

}

A.4. Sample Offer.

contract SampleOffer {

uint totalCosts;

uint oneTimeCosts;

uint dailyCosts;

address contractor;

bytes32 hashOfTheTerms;

uint minDailyCosts;

uint paidOut;

uint dateOfSignature;

DAO client; // address of DAO

bool public promiseValid;

uint public rewardDivisor;

uint public deploymentReward;

modifier callingRestriction {

if (promiseValid) {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 29

if (msg.sender != address(client))

throw;

} else if (msg.sender != contractor) {

throw;

}

_

}

modifier onlyClient {

if (msg.sender != address(client))

throw;

_

}

function SampleOffer(

address _contractor,

bytes32 _hashOfTheTerms,

uint _totalCosts,

uint _oneTimeCosts,

uint _minDailyCosts,

uint _rewardDivisor,

uint _deploymentReward

) {

contractor = _contractor;

hashOfTheTerms = _hashOfTheTerms;

totalCosts = _totalCosts;

oneTimeCosts = _oneTimeCosts;

minDailyCosts = _minDailyCosts;

dailyCosts = _minDailyCosts;

rewardDivisor = _rewardDivisor;

deploymentReward = _deploymentReward;

}

function sign() {

if (msg.value < totalCosts || dateOfSignature != 0)

throw;

if (!contractor.send(oneTimeCosts))

throw;

client = DAO(msg.sender);

dateOfSignature = now;

promiseValid = true;

}

function setDailyCosts(uint _dailyCosts) onlyClient {

dailyCosts = _dailyCosts;

if (dailyCosts < minDailyCosts)

promiseValid = false;

}

function returnRemainingMoney() onlyClient {

if (client.receiveEther.value(this.balance)())

promiseValid = false;

}

function getDailyPayment() {

if (msg.sender != contractor)

throw;

uint amount = (now - dateOfSignature) / (1 days) * dailyCosts - paidOut;

if (contractor.send(amount))

paidOut += amount;

}

function setRewardDivisor(uint _rewardDivisor) callingRestriction {

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 30

if (_rewardDivisor < 50)

throw; // 2% is the default max reward

rewardDivisor = _rewardDivisor;

}

function setDeploymentFee(uint _deploymentReward) callingRestriction {

if (deploymentReward > 10 ether)

throw; // TODO, set a max defined by Curator, or ideally oracle (set in euro)

deploymentReward = _deploymentReward;

}

function updateClientAddress(DAO _newClient) callingRestriction {

client = _newClient;

}

// interface for Ethereum Computer

function payOneTimeReward() returns(bool) {

if (msg.value < deploymentReward)

throw;

if (promiseValid) {

if (client.DAOrewardAccount().call.value(msg.value)()) {

return true;

} else {

throw;

}

} else {

if (contractor.send(msg.value)) {

return true;

} else {

throw;

}

}

}

// pay reward

function payReward() returns(bool) {

if (promiseValid) {

if (client.DAOrewardAccount().call.value(msg.value)()) {

return true;

} else {

throw;

}

} else {

if (contractor.send(msg.value)) {

return true;

} else {

throw;

}

}

}

}

A.5. Managed Account.

contract ManagedAccountInterface {

// The only address with permission to withdraw from this account

address public owner;

// If true, only the owner of the account can receive ether from it

bool public payOwnerOnly;

// The sum of ether (in wei) which has been sent to this contract

uint public accumulatedInput;

/// @notice Sends ‘_amount‘ of wei to _recipient

/// @param _amount The amount of wei to send to ‘_recipient‘

DECENTRALIZED AUTONOMOUS ORGANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT - UNDER REVIEW 31

/// @param _recipient The address to receive ‘_amount‘ of wei

/// @return True if the send completed

function payOut(address _recipient, uint _amount) returns (bool);

event PayOut(address indexed _recipient, uint _amount);

}

contract ManagedAccount is ManagedAccountInterface{

// The constructor sets the owner of the account

function ManagedAccount(address _owner, bool _payOwnerOnly) {

owner = _owner;

payOwnerOnly = _payOwnerOnly;

}

// When the contract receives a transaction without data this is called.

// It counts the amount of ether it receives and stores it in

// accumulatedInput.

function() {

accumulatedInput += msg.value;

}

function payOut(address _recipient, uint _amount) returns (bool) {

if (msg.sender != owner || msg.value > 0 || (payOwnerOnly && _recipient != owner))

throw;

if (_recipient.call.value(_amount)()) {

PayOut(_recipient, _amount);

return true;

} else {

return false;

}

}

}

	1. Introduction
	2. Dao Concept
	3. Notation
	4. Majority robs minority attack
	5. Token Price
	6. Contracts
	6.1. Token
	6.2. TokenCreation
	6.3. DAO
	6.4. Managed Account

	7. Reward Tokens
	8. Split
	9. Updates
	10. Acknowledgements
	References
	Appendix A. Contracts
	A.1. Token
	A.2. TokenCreation
	A.3. DAO
	A.4. Sample Offer
	A.5. Managed Account

